the CST Lemmatiser

version 2.13 (16 April 2008)

Bart Jongejan & Dorte Haltrup

Center for Sprogteknologi, University of Copenhagen

April 2008

© Center for Sprogteknologi, University of Copenhagen 2002, 2004, 2005

Center for Sprogteknologi
University of Copenhagen
Njalsgade 80

2300 Copenhagen S.
Denmark

http://www.cst.dk

the CST Lemmatiser last updated:

16-04-08

Contents
1. | 56N 0o Te L Te1 (o) o WU ST U PR UPRUPRURIIRt 1
2. The CST 1emmatiSer PrOQIaAMcccicuiiiirieeeeeeiiiciiiireeeeeeeeiiettrreeeeeeeesstarrreeeeesesisssssrsseessesssssessrsseesanans 2
2.1. | 501 o] 01 PPt 2
2.2. PrOCESSINIG ... e e e e e e e e e e et — b e e e e e e e e eettbaa e e e eaattaraaaaaaeaaas 2
2.2. 1. LemmMatISATIONuuiiiiiiiiieeciiiieeee e e e ettt e e e e ee et b e e e e e e e ettt bt e e e e e e e e e trtabaaaaeeeeeatabaaaeaaaaeeraraeaans 2
2.2.2. TLAINING...oooiiiiieeiiieeeee et et e e e e e e et e e e e e e e e e eettaaaeeeeeeeeeeetaraeaeeeeeeeesatrrereseeennarrreeeens 6
2.3. OUBPUL et e e e e ettt e e e e e e e eeeetaaaaeeaeeeeeeeetaraeeeaeeeeeestareseessennsarsreeeaeeeeans 7
3. Controlling the outPUL TOTINATooiiiiiiieiiieeeee et e e e e e e e e e e erareeeeens 9
3.1.) 50T o L0 11 (o)'o FON PP PREPRN 9
3.2. Syntax of —c, -b and —B parent format Strings........ccccvveeiiiiiieeiieeee e 12
3.3. Syntax of —b, -B and —W child format Strings.........cccccvieiiiiiiiiiiiiiiieee e 14
3.4. Examples of format SEIINGScuuuiiiiiiiiiiiiiiiieec et e e e et e e e e e e e ettar e e e e e e e s eatbaaaaeaeaeeesenees 14
4. Command lINe OPLIONSoooiiiiiii 17
4.1. It OAUCTION . ..ttt e e e e eee e e e e e e e eeettbaaeeeaaeeeeeeaaatbbaaeaeeeetraraaaaaaaaaas 17
4.2. Create DINATY dICTIONATY ...cciiiciiieieiiiieeecieee et e et e e estteeeestteeeseebeeeestbeeeesssaeeessssaaessnssseennssees 17
4.2 1. Command LINE.......uuiiiiiiiiiieiiiiiiieeee ettt e e ee e e e e e e e et b e e e e e e e e e eetabaaaaaaeeeeaetrareeeesaannaes 17
I 0) 1 1 Te) =SSP PURTRRRR 17
4.3. Create or add fleX PALLEITISuvvveiiiei ittt eeee e e e e e eeeetrareeeeeeeeeeearaneeeeeeeennnnes 19
4.3.1. CommMANA HINE..cciiiiiiiiiiiiiii et ettt e ettt e e ettt e e e et eeeesttaee e e tbaeeeeaataaeeeanbbaeeeabbaeeeantaaaeaarteeeanns 19
S B ©)1 o) =SOSR 19
4.4. | 7CS 4100 P21 7 £ S U PPPPPR 20
4,417, Command HNE.......cuviiiiiiieieiiiiiiiieee e e eeecit e e e e e e eebr e e e e e e e e eeattabaeaeaaeeeeaetabaaaaaaeeaaaabrabareesaneraes 20
S 0)1 T) o =S URRTR 20
4.5. (0)5)n o) s 18 1 L= TR PURUUROUR P PPPRPPPPRIRt 23

Contents A%

the CST Lemmatiser last updated:
16-04-08

1. Introduction

The CST lemmatiser has been developed under the STO project in 2002. The motivation for developing
a lemmatiser was the need to ‘handle’ new text in order to gather and select domain specific words for
the STO database. Since the STO database is corpus based, the selection of new words (lemmas) is
based upon frequency and to make a proper frequency calculation, lemmatisation is essential.

Our goal and intention has been to make as accurate and flexible lemmatisation as possible. The need
for accuracy means that average stemming or truncation is too gross — we needed rules for regularity as
well as exceptions. For this purpose we used the around 50.000 lemmas, with their respective inflected
forms, from the general vocabulary that already existed in the STO database. The rules of the CST
lemmatiser have been created, or rather learned, from the function between lemma and inflected form
of these 50.000 lemmas. The demand for flexibility has arisen from a wish to make the CST lemmatiser
usable in different applications and is shown in the extensive list of input and output formats.

The result is a trainable lemmatiser with a variety of functions. It is language independent in the way
that it can be trained for different languages, or at least for languages with inflectional suffixes, but not
with inflectional prefixes like German!. What is needed is a list of lemmas, their infected forms and, if
possible, their POS-tag.

This report contains a description of the function of the CST lemmatiser.

1 A new training algorithm has been implemented to create rules that can address inflection in any
place, not just in suffixes or prefixes. Although these rules can be applied by the CST lemmatiser, the
training of these rules is done in another program.

Introduction 1

the CST Lemmatiser last updated:
16-04-08

2. The CST lemmatiser program

In this chapter we will describe in some detail what the CST lemmatiser does, and why. We will
describe what is needed, what can be expected from the output and how the process, the algorithm,
functions.

2.1. Input

The input to the CST lemmatiser can either be a text or a list of words and in addition it can be with or
without POS-tags. The best lemmatisation is, of course, done with POS-tags because the tags are used
to disambiguate homographs in the dictionary, and to control what flex rules to use for new words. If
POS-tags are present then the default separator between word form and POS-tag is “/ (slash). If you
want another input format, you have to specify it on the command line (see chapter 4).

To get a proper lemmatisation it is essential that the text is tokenised so that punctuation marks are
separated from words.

2.2. Processing

The functionality of the CST lemmatiser can be divided into two fields: lemmatisation and training.

The main function of the lemmatisation is of cause to find the proper lemma for each word in the input.
But there are a variety of subfunctions: it can produce frequency lists, lists of conflicts between POS-tag
in the input and in the dictionary and it can work with or without a dictionary. In the training process

the main function is to create new flex rules.

It is the main functions that are described below.

2.2.1. Lemmatisation

In our approach to lemmatisation there are three main tasks:

1) Finding lemmas for known words
11) Disambiguating if the known words are a homographs
1i1) Guessing lemmas for unknown words

Figs. 1-3 show how the algorithm solves these three tasks.

2 The CST lemmatiser program

the CST Lemmatiser

@ar’c here with a word from the inpD

Is the word in

the dictionary?

Does it have more
than one homographs?

Pick the single, un-

ambiguous homograph.

Let the flex
rules decide.

Do the word classes
of some homographs

agree with the word
class of the word?

Discard all homographs
that don’t have the same
word class as the word.

Are there more
than one
homographs
left?

Pick this single
homograph.

Are the corpus-based
word frequencies the
same?

last updated:
16-04-08

0000000000000 0 0,
Legend

entrance

yes-exit no-exit

entrance

Process

exlt

Discard all but the most
frequent homographs.

Can the types of all
remaining homographs
be reduced to the same
word class?

Are the corpus
based word

frequencies the
same?

Discard all but the

Use the common
word class of all
remaining
homographs instead
of the word class of
the word.

most frequent
homographs.

The homographs
cannot be
disambiguated.

‘ ready ’

Figure 1: Disambiguation of POS-tagged words

The CST lemmatiser program

Are the lemmas of
all homographs

equally frequent in
the text?

Discard all homographs
but those having the most
frequent lemmas.

Are the word classes
of all homographs
equally close to the
word’s word class?

Discard all but the
homographs having
the closest word
classes.

Is there only one
homograph left?

The homographs

cannot be
. .. disambiguated.
Pick this single Let the flex rules
homograph. decide.

the CST Lemmatiser last updated:

16-04-08
0000000000000 0 0,
Gart here with a word from the inpD Legend
entrance

Is the word
in the

Does it have more yes-exit no-exit
than one
Pick the single, un- Let the flex
ambiguous homograph. rules decide. entrance
Process
ready ready
exlt

Are the corpus-based
word frequencies the
same?

Discard all but the most
frequent homographs.

Can the word classes
of all remaining
homographs be
reduced to the same
word class?

Are the lemmas of
all homographs

equally frequent in
the text?

Discard all homographs
but those having the most
frequent lemmas.

The homographs

cannot be

disambiguated. Is there only one
homograph left?

The homographs

cannot be
‘ ready ’ . .. disambiguated.
Pick this single Let the flex rules

homograph. decide.

Figure 2: Disambiguation of words that are not POS tagged

4 The CST lemmatiser program

the CST Lemmatiser last updated:

16-04-08
Table with
flexrules

lemm

replaceme

u \

I koncertsalen skal beepere vere slukket.

Figure 3: Lemmatisation using flex-rules. The longest matching pattern (pere) prevails over all shorter
matching patterns (e).

Straightforward is the case where a word from the input stream, according to the dictionary, has
exactly one homograph that matches both the word form and the POS-tag of the word in question. Also
quite straightforward is the case where the dictionary lookup has no result at all: in that case the flex
rules can easily produce an unambiguous result.

More complicated is the case where a word has more than one homograph, each homograph having a
different lemma. If the two (or more) alternative lemmas belong to different word classes, the POS-tag
from the input is used to disambiguate. If, on the other hand, the alternative lemmas belong to the
same word class, the most probable word form is chosen instead. In the Danish dictionary frequency
information derived from the tagged Parole corpus is used to estimate a word’s probability. If frequency
isn’t enough (eg. the word forms don’t exist in the Parole corpus and hence frequency information is
lacking), then a probability estimate is made on the input text and the most frequent lemma is chosen.
As a final solution the flex rules are used, ignoring the conflicting lemmas from the dictionary
altogether.

Another type of ambiguity arises when the POS-tag from the input doesn’t correspond to the word class
(-es) in the dictionary. Our choice here is to let the dictionary overrule the input tags. The reason is that
the dictionary is made manually and is therefore more reliable than the inputtags generated by an
automatic tagger. If the dictionary presents alternative lemmas, the same procedure as for homographs
is used, with the additional heuristic that if none of the aforementioned selection criteria leads to
complete disambiguation, the input POS-tag is compared with the word class of each candidate
homograph. Although none of the word classes matches exactly with the POS-tag, some word classes
may be more related than others. The closest match points at the winning homograph.

Another approach to lemmatisation is not to discriminate between known and unknown words,
ambiguous and unambiguous words. Then flexrules will generate all lemmas. In our application this
approach is actually a side effect — our lemmatiser can work by the rules alone and thereby function as
an advanced stemmer. This kind of stemming is a bit quicker and a bit more inaccurate than
lemmatisation.

We made a test using the CST lemmatiser with and without the dictionary and with and without POS-
tags. The test material was 250.000 words from the Parole corpus. Here are the results:

The CST lemmatiser program 5

the CST Lemmatiser last updated:
16-04-08

Correct lemmas Time

Input with POS-tags
Lemmatisation with 97,8 % App. 1 min.
dictionary

=real lemmatiser
Input without POS-tags
Lemmatisation with 94,5 % App. 25 sec
dictionary

= discount lemmatiser
Input with POS-tags
Lemmatisation without 97,4 % App. 48 sec.
dictionary

= good stemmer
Input without POS-tags
Lemmatisation without 88,4 % App. 30 sec
dictionary
= stemmer

Among the 250.000 words 24% were unknown to the dictionary. As the schema shows, the CST
lemmatiser is doing very well. It seems surprising that the presence of POS-tags makes a bigger
difference to the result than the dictionary. The reason is first of all that the flex rule are created from
the dictionary, secondly that the rules work according to our intentions, and finally that information
about POS is a big help in guiding through the flex rules. In the best result with the real lemmatiser
half of the errors made are caused by adjectives, a word class still underrepresented in our training
material.

2.2.2. Training

As mentioned in the introduction the CST lemmatiser can be trained to different languages. The
training material is a dictionary containing lemmas, their respective full forms and the POS-tags of the
full forms. From this dictionary the algorithm creates a list of flex rules for each POS-class. Training
the Danish version on 450.000 word forms, corresponding to 60.000 different lemmas, created 44.000
different flex rules.

Below is a list of word forms, their corresponding lemmas and the simplest rules, which could map the
word forms to their lemmas:

Word form Lemma Rules
1) billederne billede -rne[+0]
2) héndteringerne héndtering -erne[+0]
3) forskerne forsker -ne[+0]
4) politikkerne politik -kerne[+0]
5) aftraekkerne aftraekker -ne[+0]
6) bagsmaekkerne bagsmak -kerne[+0]
7 fluesmeekkerne fluesmeekker -ne[+0]

These rules work for each word-/lemma pair in isolation, but in general they are insufficient because
there is no information about which rule to use for a given word form. The first rule e.g. could be
applied to all 7 words but with a wrong result. We need more information about the words to which the
rules are applicable, and to get this information we need to look deeper into the words.

6 The CST lemmatiser program

the CST Lemmatiser last updated:
16-04-08

In the training process there is a meta principle guiding the process saying: only use the longest
matching rule. In the case above ‘rne[+0] is applied to 2), but fails to produce the correct lemma. Then
a new rule is created which must be longer than the former and we get ‘-erne[+0]’. This process
continues throughout the training material in a way that the longest existing rule that match the word
form, is applied, and if it fails to produce the correct lemma, a new and longer rule is created. The
process can be illustrated by the following rules:

Word form Lemma Rules
1) billederne billede -rne[+0]
2) handteringerne handtering -erne[+0]
3) forskerne forsker -kerne[+ker]
4) politikkerne politik -kkerne[+k]
5) aftraekkerne aftraekker -ekkerne[+axkker]
6) bagsmaekkerne bagsmaek -maekkerne[+maek]
7) fluesmeekkerne fluesmeekker -smaekkerne[+smaekker]

The creation of flex rules continues by repeated iterations of the training material until all word forms
are correctly lemmatised. Finally rules that have become redundant during the process are removed.
The final rules for the abovementioned words are:

Word form Lemma Rules
1) billederne billede -llederne[+llede]
2) handteringerne handtering -eringerne[+ering]
3) forskerne forsker -orskerne[+orsker]
4) politikkerne politik -kkerne[+K]
5) aftraekkerne aftraekker -aftreekkerne[+aftraekker]
6) bagsmaekkerne bagsmaek -maekkerne[+meek]
7) fluesmeekkerne fluesmeekker -uesmakkerne[+uesmaekker]

After the training it is possible to remove unwanted rules from the flex rule file. In Danish, we found
that irregular inflection of proper names created wrong lemmas for most names. To avoid this we
removed all rules for proper named except those for genitive.

2.3. Output

The default output format for the basic CST lemmatiser is word form/tag/lemma:

Example:
Input: Fordommene/N slerer/V_PRES hans/PRON_POSS vurdering/N af/PRAEP sagen/N

Output: Fordommene/N/ fordom
slorer/V_PRES/ slore
hans/PRON_POSS/ hans
vurdering/N/vurdering
af/PRAP/af/
sagen/N/sag

In general the CST lemmatiser can be instructed to either focus on listing full forms or lemmas. The
first, in turn, can focus on tokens, meaning all words in a text, or on types, meaning all different word

The CST lemmatiser program 7

the CST Lemmatiser last updated:
16-04-08

forms in a text. Either way, the lemmatiser can provide information on both in its output. Thus, it is
possible to produce:

1) Output corresponding to the input text, enriched with information on each word’s lemma,
shown as the default output above. This token oriented output is especially useful if the context
of each word needs to be preserved.

(11) Output as a sorted list of the words that occur in the text, together with information on each
word’s lemma. This type oriented output, which sorts and merges the input so that each full
form occurring one or more times in the input only occurs once in the output, is useful if the
main interest is in creating a full-form-to-lemma-“dictionary”.

(111) Output as a sorted list of lemmas that are represented one or more times by full forms in the
text. This lemma-oriented output is useful if one wants to know which lemmas are occurring in
the text at all. Each lemma in the list can be enriched with a full listing of the full forms leading
to the lemma after lemmatisation, thus giving a good impression of which inflected forms of a
lemma occur in the text.

All forms of output can be enriched with frequency information, telling how often a full form occurs in
the text and how often a lemma (disregarding any inflections) is represented in the text.

As mentioned the CST lemmatiser has two resources that it can use to determine the lemma of a given
word: a built-in dictionary and a list of flex rules. The lemmatiser can show the results of both resources
and the user can define which result or results should be selected for output.

In section 2.2.1 we described how the CST lemmatiser applies some heuristics to solve ambiguous cases.
Some of these heuristics can be activated by setting options on the command line: the flex rules can be
forced to only output unambiguous solutions whereas the dictionary mechanism can be instructed to
prune solutions away using word frequencies from a “standard” corpus, in the Danish case the Parole
corpus, or, as a last refuge, by looking at the lemma’s frequency in the input text.

8 The CST lemmatiser program

the CST Lemmatiser last updated:
16-04-08

3. Controlling the output format

3.1. Introduction

If we don’t take measures to suppress ambiguous dictionary look-ups and ambiguous flex rule
applications, a word may have any number of lemmas. Also, if the program uses a dictionary, it is
possible that a word isn’t found in the dictionary at all. In general, it is desirable to be able to steer the
output so that certain phenomena can be scrutinized more easily. For example, it might be nice to
always have just a single solution to a lemmatisation, whatever the amount of ambiguity that the
program encounters. This could be done by presenting the solution obtained by dictionary look-up if
there is exactly one such solution and to present the flex rules’ solution in all other cases. As another
example, we might be interested to only see those words in the output that gave rise to ambiguity, or to
see only those lemmas that are represented by five inflected forms in the text. These examples show
that the program must allow the user to define which items are shown in the output, under which
conditions they must be shown and how they must be shown.

word

word

word

word
lemm word
lemm word
lemm word
lemm word homographs
lemm word /
lemm word

word

word

word

Figure 4. Internally, each word form occurring in the input has one or more lemmas, originating from
the dictionary or from application of the flex rules. And conversely, lemmas have typically more than one
word form.

Basically, the output consists of lemmas or contains lemmas, among other items. These other items are
first and foremost the original word form and the POS-tag of the word form, but also statistics and lay-
out elements can be written into the output. If the output is to contain both lemmas and word forms, we
have the complication that a lemma can have more than one word form and that a word form can have
more than one lemma (see fig. 4).

Controlling the output format 9

the CST Lemmatiser last updated:
16-04-08

As we cannot both list all word forms for each lemma and all lemmas for each word form in a
meaningful way, we have to choose.

output
paren paren paren
child child child child child child child child

Figure 5. General format of the output.

Thus, either the output lists the lemmas that occur in the text and, for each lemma, lists the word forms
(=children) that belong to the lemma (=parent), or, alternatively, the output lists the word forms as they
occur in the text and lists the possible lemmas (=children) for each word form (=parent).

The CST lemmatiser can use several strategies for reducing the number of lemmas per word form. In
fully disambiguated output each word form has exactly one lemma. On the other hand, a lemma in fully
disambiguated output can still have more than one word form. Therefore, fully disambiguated output
will look like in figs 6a and 6b.

output
word form word form word form
lemm lemm lemm

Figure 6a Disambiguated output. One lemma per word form.

10 Controlling the output format

the CST Lemmatiser last updated:
16-04-08

output

I

lemm lemm lemm

word word | word | | word | | word

Figure 6b Disambiguated output. Possibly more than one word form per lemma.

Disambiguation can basically take place in three ways:

1) If dictionary look-up has more than one results, then some results may be discarded for some
reason.

2) The set of flex rules can be pruned for all ambiguous rules.

3) If dictionary look-up has more than one single result, then we can use the (disambiguated) flex-
rules instead.

Whereas 1) and 2) are governed by command line options dedicated to several heuristics, 3) is a kind of
disambiguation that is effectuated by carefully formulating how the output must be shaped. Thus, it is
possible to program the output in the following way:

If there is just one candidate lemma from the dictionary
Then output the lemma from the dictionary.
Else output the lemma as computed by the flex rules.

If all ambiguous rules are removed beforehand, then this program would produce fully disambiguated
output.

Notice that disambiguation attempts (those that are commanded by command line options) take place
before such output rules are applied. So the lemmatiser will first try to disambiguate dictionary look-
ups on the basis of, say, corpus frequencies and then it may decide to use the flex rules after all. The
programmability of the output makes it possible to format the output in many other ways, for example

If there are more than one candidate lemmas from the dictionary
Then output these lemmas
Else do not produce output at all.

Or
If there are more than one candidate lemmas from the dictionary
Then output these lemmas and the flex rule lemmas
Else only output the dictionary lemma

Or

Controlling the output format 11

the CST Lemmatiser last updated:
16-04-08

If there are no candidate lemmas from the dictionary
Then output the flex rule lemmas
Else don’t output anything.

As these examples have made clear, there is a need to be able to count the number of children data
(lemmas candidating for a word, words candidating for a lemma) and to be able to decide what to
output, based on these numbers. This is achieved by defining format strings on the command line; one
or two format strings for the way a child must be formatted and one or two format strings for the way a
parent must be formatted. It is only in the parent format string that conditions can be tested and
decisions can be made as to what to output, based on the results of these tests. If the output must list
all word forms for each lemma, then we use the —B or -b command line option to describe the parent
format (the lemma) and the —W command line option to describe the child format (the word forms
belonging to the lemma). If the output must list all word forms and the lemmas for each word form
(whether or not disambiguated), then we use the —c command line option to describe the parent format
string (the word form) and the —B or —b command line options to describe the child format strings (the
lemmas). The syntax of these format strings is described in the next section.

3.2. Syntax of —c, -b and -B parent format strings

Note: Angled brackets and vertical bars (OR) are part of the syntax notation. Expressions between
angled brackets denote non-terminal nodes. Italicised text is comment. Longer comments are put in
footnotes.

format ::= <quote><expression><quote>2
quote ::= ” double quote (Windows)

" single quote (Unix, Linux)
expression ::= <expression element><expression>
expression element ::= <countable3 expression element>

| <uncountable? expression element >
countable expression element ::=
<invisible countable expression element>
| <countable block>
| <countable field>
invisible countable expression element?® ::=
[<countable expression element>]<hide tag>
uncountable expression element ::=
<uncountable block>
| <uncountable field spec>

2 The quotes can be left out if there are no blanks in the format string.

3 ”Countable”, in this context, is a compound concept. A countable expression has the property of a
numeric result, but also the property that it can succeed or fail. For example, the expression $b<5
succeeds if there are k=1,2,3 or 4 instantiations of the field b. Its numeric result is the value of k. If,
however, k = 0 or k > 4, then the expression fails and the number k is rendered irrelevant. A countable
expression also has the property that it appears in the output, unless it is made invisible with the hide
tag 7.

4 Uncountable expressions elements, in contrast to countable expression elements, have no numeric
result or success/failure property.

5 Invisible countable expression elements do not appear in the output. They can be used to decide the
visibility of other expression elements.

12 Controlling the output format

the CST Lemmatiser last updated:

16-04-08
| <literal expression>
literal expression ::= a string of printable characters
uncountable block® ::= [<countable expression>]7
countable expression ::= <countable expression element> <expression>
| <expression element ><countable expression>8
countable block ::= [<countable expression>]<test>
countable field ::= <countable field spec>
| <countable field spec><test>
countable field spec ::= $9 <countable field name>
uncountable field spec ::= $ <uncountable field name>
countable field name ::= b10
| Bu1
| W2
uncountable field name ::= 13
| sl4
| £15
| w6

6 Uncountable blocks are used to tie the visibility of uncountable expression elements to the success of
fallible expression elements

7 The square brackets do not appear in the output. To make sure that square brackets appear in the
output, use the escape character "\’ in front of the bracket: \[\]

8 Countable expressions can have more than one countable expression elements. For the countable
expression to succeed, all its countable expression elements must succeed.

9 The dollar sign does not appear in the output. To write a dollar sign, use \$.

10 $b is the field that expands to all lemmas that result from looking up the full form in the dictionary.
It can only occur in the —c format and needs the specification of a —b format.

11 §B is the field that expands to all lemmas that result from applying the flex rules. It can only occur in
the —c format and needs the specification of a —B format.

12 §$W is the field that expands to all full forms that were lemmatised to one and the same lemma, either
by dictionary look-up (if occurring in the —b format) or flex rule application (if occurring in the —B
format). It needs the specification of a —W format.

13 $f is the field that returns the number of times a full form occurs in the input text. If used in the —b
and —B formats, it is the number of times the lemma (lemma) occurs in the text in any of its inflected
forms (full forms).

14 s evaluates to either a new line character or a blank, depending on whether the current word is the
last word before a line break or not. This field can only meaningfully be used in the —c format with
sorting turned of (-q-). $s always evaluates to blank if the output is sorted (-q or —g#) or when specified
in the —W format.

15 $t expands to the word class of the word ($w). If used in the —c or —W format, $t is the word class of
the full form. If used in the —b and —B formats, $t is the word class of the lemma, which is the same as
the word class of the full form, unless there is an entry in the type conversion table (-z command line
option) that transforms the full form word class to another type.

Controlling the output format 13

the CST Lemmatiser last updated:

16-04-08
test == <op>non-negative whole number
| <simple test>
simple test ::= +17

| *18

| non-negative whole number??
<20

| >21

| ~22

op ::

hide tag ::= ?

3.3. Syntax of -b, -B and -W child format strings

format ::= <quote>< uncountable expression><quote>
quote ::= ” double quote (Windows)

> single quote (Unix, Linux)
uncountable expression ::= <uncountable expression element><expression>

uncountable expression element ::=
<uncountable field spec>
| literal expression

uncountable field spec ::= § <uncountable field name>
uncountable field name ::= f

| t

| w

3.4. Examples of format strings

For example, if we want to output only those lemmas that are inflected in exactly five ways in the text,
define the following —b (or —B) format:

-b’[$w [{$W}]5\n]’
As we are using the $W field, we also need to specify the —-W format:
-W’$w’

Explanation:

16 $w is the word form. If used in the —c or —W format, $w expands to the full word. If used in the —b and
—B formats, $w expands to the lemma.

17 + tests for the presence of one or more instantiations.
18 * always succeeds, it tests for the presence of any number of instantiations.

19 A number k without an operator indicates that the expression succeeds if there are exactly k
instantiations and that it fails otherwise.

20 <k succeeds if there are less than k instantiations and fails if there are k or more instantiations.
21 >k succeeds if there are more than k instantiations and fails if there are k or less instantiations.

22 ~k fails if there are exactly k instantiations and succeeds otherwise.

14 Controlling the output format

the CST Lemmatiser last updated:

W

16-04-08

We only want to generate output under certain conditions. These conditions are
somewhere between the outer square brackets.

If there is generated output, its final character must be a new line character. Thus, we are
generating one line per output item.

A $w in a —b or —B format represents the lemma or lemma. Thus, the first thing on a line
of output will be a lemma. In the —W format, $w stands for a full form of a word.

Between the 'w’ and the opening square bracket is a blank. This blank is copied literally
to the output.

Here we have the expression that the outer square brackets can test. If there are exactly
five occurrences of something between the inner square brackets, then this expression
succeeds. Also, all five instances of the 'something’ are copied to the output line.

Like the blank that we saw before, the characters { and } are copied to the output, but only
if the condition that surrounds them is met. Also, only one { and one } are copied, even
though there is something that is output five times.

This i1s the ’something’ that can occur a variable number of times. It is an item that tells
that at this place something must be output, but it does not specify how. The ’how’ is
specified in another command line argument, the —W format. As seen above, the —W
format specifies that just the full form is output. If there are more than one instances of
$W, then the instances are separated by a vertical bar ’|’. The separator can be re-
specified with yet another command line argument, -s.

Let us have a look at another format. We want output that, for each word in the text, shows exactly one
lemma, followed by a blank. Although we are not going to have full forms in the output, what we want
is still token-or type-oriented, as opposed to lemma oriented. So we use the —c format to have a token- or
type- oriented handling and the —b and —B formats to have access to the lemma information of each
token or type. The —c format will look as follows:

Explanation:

[$b0S$B]

-’ [$bO3B][$b1][[$b>1]?$B]’
-b ’$w’

-B’$w’

Between the closing bracket and the quote is a blank. Thus, each piece of output is
concluded by a blank.

There are three parts that, depending on the circumstances, can end up in the output. Of
course, these parts correspond to the circumstance that we have no successful dictionary
look-up, that we have an ambiguous dictionary look-up that cannot be remedied by
disambiguation heuristics and that we have a dictionary look-up resulting in exactly one
homograph. At face value, the three blocks could provide output independent of whether
the other blocks do or not, but by looking at the conditions that are tested, we can
conclude that one and only one block fires’.

This block tells that the flex rule solution $B must be output if the dictionary look-up
failed to return a homograph. The brackets surrounding $b0$B makes $B dependent on
the success of $b0.

Controlling the output format 15

the CST Lemmatiser last updated:
16-04-08

$b1 This is a short-hand notation for [$b]1. It means that the field $b is copied to the output if
there is exactly one instance of it. $b encapsulates the data that are obtained by
dictionary look-up. Thus, if dictionary look-up gave exactly one homograph, then $bl
succeeds. The brackets surrounding $b1l can, in fact, be left out.

[[$b>1]?$B] This block tells to use the flex rules’ solution instead of the homographs obtained from the
dictionary. This is a last resort way to evade ambiguity.

[...]? This expression suppresses the output from the bracketed expression.

The same result can be obtained using a slightly simpler —c format, testing the number of dictionary
solutions two instead of three times:

-c’$b1[[$b~1]?$B]’

Much more complex formats can be specified. For example, the following format creates output if a
lemma is represented by three or four inflected forms:

[$w [[{(3W}]<5]>2\n]

That is, the inner test [{$W}]<5 percolates the number of instances of $W to the surrounding brackets
[...]>2. If the inner test succeeds, the outer test is applied. The outer test fails if the inner test fails or if
there are two or less instances of $W. The same effect could be obtained by e.g.

[Bw {SWIHSW?]>2[§W?]<5\n]
The last example shows that a [...] block only creates output if all conditions are met. We could use this
to find all words that are lemmatised ambiguously by dictionary look-up as well as flex rule application

(turn flex rule disambiguation off, -U-).

-¢’[$w dictionary([$b]>1) flex rules([$B]>1)\n]’

16 Controlling the output format

the CST Lemmatiser last updated:
16-04-08

4. Command line options

4.1. Introduction

The CST lemmatiser is, in fact, three programs in one. Besides its main purpose, lemmatising a text, it
has two subordinate functions, namely the creation of resources that are used by the lemmatising
process. The resources created by the program are

e A machine-readable dictionary for quick look-up of words

o A set of flex rules for lemmatising words not found in the dictionary.

In the paragraphs describing these functionalities, the following notation is used:

-X option letter x

-x<arg> option x requires an argument. The argument may be separated from the option letter by
blanks.

[opt] “opt” is an optional option (sic)

<descr> a variable, to be replaced by a value in a concrete command line.

Important note: Unix and Windows use different methods for keeping command line arguments
together that contain blanks: In Windows, such arguments must be surrounded by double quotes. In
Unix, arguments must be enclosed in single quotes. The examples below use single quotes (Unix
format).

4.2, Create binary dictionary

4.2.1. Command line

cstlemma -D -c<format> [-N<frequency file> -n<format>] [-i<lemmafile>] [-o<binarydictionary>]

[-y[-11 [-k[-11
4.2.2. Options

-D This option letter instructs the program to create a binary dictionary from a list of
lemmas. Each line in the lemma file must contain a full form and a lemma.

-i<lemmafile>
Name of the dictionary (lemma) input file.

-c<format> Column format of dictionary file (tab separated). You must use the letters ‘F’, ‘B’ and ‘T
once. ‘F’ and ‘B’ indicate the columns of full forms and lemmas respectively. “T" indicates
the column containing the word class of the full form.

Example:
-cFBT
which means: 1st column = full form, 2nd column = lemma, 3rd column = type
klon klon N
klon klone V_IMP

Command line options 17

the CST Lemmatiser last updated:

16-04-08
klone klone V_INF
klonede klone V_PARTC_PAST
klonede klone V_PAST
klonedes klone V_PAST
klonen klon N
klonen klone V_GERUND
klonende klone V_PARTC_PRES
klonens klon N_GEN
kloner klon N
kloner klone V_PRES
klonerne klon N
klonernes klon N_GEN
kloners klon N_GEN
klones klone V_INF
klones klone V_PRES
klonet klone V_PARTC_PAST

-N<frequency file>

The name of a file that contains frequency information of full forms, as extracted from a
corpus. This file may also contain lemma frequencies. You can specify one or more
frequency files. For each frequency file you must specify a column format with a —n option
specification. The first —N specification is paired with the first —n specification, the second
with the second, etc.

-n<format> Column format of frequency file (tab separated). The column indicated by ‘N’ contains a
full form’s frequency. The column indicated by ‘F’ indicates the full form. The column
indicated by “T” contains the word class of the full form. Optionally, you can indicate a
column containing lemmas with the letter ‘B’. You can use ‘? to cancel out columns
containing irrelevant data. You can have both frequency files containing lemma-
information and frequency files not containing this information If no lemma-information
is present, all lemmas compatible with a given full form are incremented with the
frequency data.

Example:

-nN?FT

which means: 1st column N(frequency), 2nd column irrelevant, 3rd column F(ull form),
4th column T(ype).
1533 4.790625 reception N
1532 4.7875 oprindelige ADJ
1531 4.784375 tanker N
1531 4.784375 tabt V_PARTC_PAST
1531 4.784375 leengst ADV
1531 4.784375 etniske ADJ
1529 4.778125 serberne N
1526 4.76875 voldsomt ADJ

-o<binarydictionary>
Name of the output file. Notice that the output file is a binary file. It is, in general, not
portable between operating systems and hardware platforms.

-y test output

-y- production output (default)

18 Command line options

the CST Lemmatiser last updated:
16-04-08

-k collapse homographs (remove ",n" endings)(default)
-k- do not collapse homographs (keep ",n" endings)

4.3. Create or add flex patterns

4.3.1. Command line

cstlemma -F -c<format> [-y[-11 [-CL[-In11 [-R[-1]1 [-i<lemmafile>] [-f<old flexpatterns>] [-o<new
flexpatterns>] [-e<encoding>]

4.3.2. Options

-F This option letter instructs the program to build a list of flex rules from a list of lemmas.
As minimum, each line in the lemma file must contain a full form and a lemma. If the
word class of the full form is provided, then a better list of flex rules can be made, but it
can only be applied to POS-tagged texts, preferably using the same tag set as the lemma
list.

-c<format> column format, e.g. -cBFT, which means: 1st column B(aseform), 2nd column F(ullform),
3rd column T(ype)
For lemmatising untagged text, suppress word class information by specifying '?' in place
of "T"

-i<lemmafile>
Name of the input dictionary (lemma) file. This can be the same file as used for the
creation of the binary dictionary.

-f<old flexpatterns>
By specifying this option you can refine an existing flex rule file (the argument of the —f
option).23

-o<new flexpatterns>

Name of the output file. The flex rule file is a text file and can be post-edited manually,
for example for removing an unwanted group of rules. The flex rule file can safely be
ported between operating systems and hardware platforms, which is nice, because
generating the flex rules is a time consuming process.

-y Test output

-y- Release output (default)

-C<n> n=0,1, ... Include only rules that have support from at least n words in the input file.
(This vastly reduces the size of the output file. Use it if there are signs of overfitting.)

-C- Include all generated rules in the output flex rule file (default).

-R For each rule in the output, add information about the number of words tha support the
rule. (This number is not used in any way during lemmatisation.)

-R- Don’t add these numbers.

-e<n> Encoding to adopt for case conversion. n=1: use ISO8859-1 encoding (Western European,

default). Other encodings: 2 (Central European), 7 (Greek) and 9 (Turkish).

23 This option hasn’t been used for a long time and its functioning is not guaranteed.

Command line options 19

the CST Lemmatiser last updated:

4.4.

4.4.1.

16-04-08

Do not apply case conversion.

Lemmatise

Command line

cstlemma [-L] -c<format> [-d<binarydictionary>] -f<flexpatterns> [-b<format>] [-B<format>]
[-W<format>] [-s[<sep>1]1 [-ul-11 [-V[-11 [-Vv[-1]1 [-x<Word class translation table>] [-e<n>]
[-v<tag friends Ffile>] [-z<type conversion table>] [-i<input>] [-o<output>] [-m<number>]

4.4.2.

L

-i<input>

-I<format>

-o<output>

Options

This option instructs the program to lemmatise (as opposed to creating a machine-
readable dictionary or a set of flex rules). Optional (Lemmatising is the default behaviour
of the program).

Specification of input text. Only needed if input isn’t standard input. The CST lemmatiser
can handle tagged as well as untagged text, depending on the setting of the —t option

Specification of deviating input format. Without this option, the CST lemmatiser assumes,
depending on the setting of the —t option, that the input is a flat text or a text consisting
of word-tag pairs where the word is followed by its tag, separated by a slash. With this
option, more complex input text can be read. For example, -I'$d\t$w\t$t\n’ reads a text
that represents one word per line, a line containing the word’s lemma, its full form and its
tag, in this order and each element separated from its neighbours by a tab. The meaning
of the format string is as follows:

Sw captures the full form of the word, i.e. the element to be lemmatised

$t captures the POS-tag (the word class as assigned during a previous process,
eg. a tagger) of the word

$d captures en element that we don’t use (dummy); in the example above this
1s the lemma as provided in the input.

\t matches a tab
\n matches a new line character
Other elements that can occur are

a literal matches a string of one or more characters. All characters in the literal
expression must occur in the input in the same order and with the same
case, otherwise the match fails. If there are more than one occurrences of
the literal in the input, then only the first occurrence is matched.

\s matches any number of white space characters (including new lines and
tabs)

\S matches any number of non-white space characters

Specification of the output file. If the input is standard input then the default output is
standard output. Otherwise the default output is a file with a name that is constructed
from the input file’s name by merely appending an extension ‘lemma’. The output file’s
format can be defined with the -b, -B, -c and -W options.

-d<binarydictionary>

20

The name of the machine-readable dictionary as produced with the -D option set. If no
dictionary is specified, then only the flex patterns are used. Without dictionary, wrong

Command line options

the CST Lemmatiser

last updated:
16-04-08

tags in the input cannot be corrected. Note that the dictionary is in a format that, in
general, is not portable between different operating systems and hardware platforms.

-f<flexpatterns>

Specification

of the file containing flex patterns. (see —F option). It is advisable to use

different files for tagged and untagged text. Best results for untagged input are obtained
if the rules are made without word class information.

-b<format string>

Default:"$w" Output format for data pertaining to the lemma, according to the dictionary:

$f
$t
Sw
\$
Nl
\
\t
\n
$W

-B<format string>

Default:"$w".

-W<format string>

Lemma token frequency in the input text.

word class

lemma

dollar character

Opening square bracket [

Closing square bracket |

tab

newline (especially useful in combination with the —W option.

(List of) full form(s) in the text belonging to this lemma. A lemma can have
any number of full forms. This number can be tested in conditions. The $W
field can only be used if the —W option is specified, which is incompatible
with the —c option. For a fuller description of how to program the output, see
chapter 3.

Output format for data pertaining to the lemma, as predicted by flex pattern
rules. See -b

Default: not present. Use the —W option if you want to have an overview over which
lemmas occur in the text and in which appearances. The —W format decides how, for each
lemma, the full forms belonging to this lemma should be written. You must use this
option in combination with —b, -B or both. If both —b and —B are specified, the two lists are
simply concatenated in the output, the list of lemmas according to the dictionary (-b) first.
The —b or —B format must contain a field $W for the —W option to take effect. The —-W
option is similar to the —c option, but $b and $B are not allowed in —W format strings.

Sw
$t
$f
$i

\t

a full form of the lemma, as occurring in the input text.
word class(s) according to dictionary

full form type frequency

info:
full form is not in the dictionary
+ full form is in the dictionary, but having another type
(blank) full form is in the dictionary
tab

Example: -W"$w/$t"

Command line options

21

the CST Lemmatiser last updated:

-c<format string>

&

=

-e<n>

22

16-04-08
default: ‘Sw\t$b1[[$b?]~1$B]\t$t\n’ Output format
Sw full form
$b lemmac(s) according to dictionary. (You also need to specify -b<format>) (If

the full form is found in the dictionary and tag=word class, then only one
lemma is output. Otherwise all lemmas may output, but see also the —U

option)

$B lemma(s) according to flex pattern rule. You also need to specify
-B<format>.

$s word separator: new line character when the current word is the last

word before a line break, blank otherwise

$t word class(s) according to dictionary

$f full form type frequency

$1 info:
- full form not in dictionary
+ full form in dictionary, but other word class
(blank) full form in dictionary

\t tab

Sort output alphabetically.

Do not sort output (default).

Sort output by frequency — most frequent lemmas or words first.
Multiple lemmas (-b -B) are <sep>-separated. Example: -s" | ".
Multiple lemmas (-b -B) are "|"-separated (default).

Input text is tagged (default).
Input text is not tagged.

Enforce unique flex rules (default).
Allow ambiguous flex rules.

Disambiguate dictionary look-up (default). By using this option, the program is instructed
to use corpus based frequencies to disambiguate between two otherwise acceptable
lemmas. The corpus based frequencies are stored in the dictionary. Also, if dictionary
lookup results in more than one homographs that only differ in a sequence number
appended to the lemma, then the program is instructed to merge all homographs into one
by dropping the sequence number.

Allow ambiguous dictionary look-up

Disambiguation based on lemma frequencies in the input text:

n=0: use lemma frequencies in the input text for disambiguation (default)

n=1: use lemma frequencies in the input text for disambiguation, show
candidates for pruning between << and >>

n=2: do not use lemma frequencies for disambiguation.

Encoding to adopt for case conversion. n=1: use ISO8859-1 encoding (Western European,
default). Other encodings: 2 (Central European), 7 (Greek) and 9 (Turkish).

Command line options

the CST Lemmatiser last updated:
16-04-08

-e- Do not apply case conversion.

-v<tag friends file>:

Use this option to coerce the nearest fit between input tag and the dictionary's word classs
if the dictionary has more than one homographs of the input word and none of these has a
word class that exactly agrees with the input tag. Format:

{<dict type> {<space> <tag>}* <newline>}*

The more to the left the tag is, the better the agreement with the dictionary's word class.

Example:

ADJ V_PARTC_PAST ADV V_PAST V_INF
ADJ_GEN N_GEN V_PRES V_INF

ADV PRAP UKONJ

-x<Word class translation table>:

Use this option to handle tagged texts with tags that do not occur in the dictionary.
Format:

{<dict word class> {<space> <tag>}* <newline>}*

-z<type conversion table>:

Use this option to change the meaning of $t in -b and -B formats. Without conversion
table, $t is the word class of the full form. With conversion table, $t is the word class of
the lemma, as defined by the table. Format:

{<lemma type> <space> <full form word class> <newline>}*

Example:

V_GERUND V
V_IMP \Y
V_INF \Y

V_MED_INF V_MED
V_MED_PARTC_PAST V_MED

V_MED_PAST V_MED
V_MED_PRES V_MED
V_PARTC_PAST v
V_PARTC_PRES \Y%
V_PAST \Y

V_PRES A%

-m<number> Limit the number of words to lemmatise to <number>. If the input contains more than
<number> words, then only the first <number> words are lemmatised. If <number> is 0
(zero), then the lemmatiser does not limit the number of words (default).

4.5. Option files

Often-used combinations of option settings can be stored in option files. Instead of writing the options
on the command file, you instruct the program to read the option file. The syntax for option file
inclusion is

cstlemma -@ option file name

You can include more than one option files on the same command line. You can have both ‘normal’
options and option file inclusions on the same command line. You can overrule option settings by

Command line options 23

the CST Lemmatiser last updated:
16-04-08

specifying them more than once: only the last setting takes effect. You can include option files inside
other option files.

In an option file each option occupies one line, but lines can also be empty or contain comments.
Comments are introduced by a semicolon and can also follow after an option setting on the same line.

24 Command line options

